sustainability hub

Hub Co-Leader: Prof Michael Grubb

Prof Michael GrubbProf Michael Grubb is Professor of Energy and Climate Change at University College London (Institute of Sustainable Resources & Energy Institute). From 2011-2016, alongside academic roles, he worked half-time at the UK Office of Gas and Electricity Markets (the energy regulator, Ofgem) as Senior Advisor, initially on Sustainable Energy Policy, and subsequently Improving Regulation; from Autumn 2016 he moved to Chair the UK government’s Panel of Technical Experts on Electricity Market Reform.

Grubb has combined research and applied roles for many years, bringing research insights into policymaking, and bringing practical experience to bear upon academic studies. Before joining UCL he was part-time Senior Research Associate in Economics at Cambridge University, combined with (prior to joining Ofgem) Chief Economist at the Carbon Trust Carbon Trust, and Chair of the international research network/interface organisation Climate Strategies.

view full profile

Hub Co-Leader: Dr Tiago Cavalcanti

Dr Tiago Cavalcanti

Dr Tiago Cavalcanti is a senior lecturer in the Faculty of Economics and a fellow of Trinity College. He gained his PhD in economics from the University of Illinois at Urbana-Champaign and taught first at Universidade Nova de Lisboa in Spain from 2001 to 2003 followed by Universidade Federal de Pernambuco in Brazil from 2003 to 2007. He then moved to the United States and became a visiting assistant professor at Purdue University from 2005 to 2006. His teaching and research focuses on macroeconomics, growth economic development, and inequality. He is also the editor of the B.E. Journal of Macroeconomics.

view full profile


“Anyone who believes that exponential growth can go on forever in a finite world is either a madman or an economist” – Kenneth Boulding

Economic policy is aimed at socially sustainable growth, yet scientific evidence suggests our economy has physical limits. Our atmosphere and energy supplies are almost certain constraints on future output. The limits on physical resources might need to be taken into account by macroeconomics to create a more accurate understanding of sustainability. What is the importance of energy availability for growth, and do planetary boundaries need to be taken more seriously?

Views vary on the outlook for energy availability. But if we do enter a world where the supply of energy decreases, as many predict, how would this affect us? The conventional economic view is that energy prices would spike in the short-term as it would be difficult to substitute to alternative means of energy production. In the long-term, these higher prices would encourage alternative methods of energy production.

Although, one argument is that the reduction in energy in the short-term might make it impossible to substitute to alternative forms of energy, as the discovery process itself requires energy. We might get to a point where we do not have enough energy from the currently used methods to switch to an alternative. This is because if energy is a critical enabler of key technologies then technology is only possible because of energy. This also questions the rate of technological progress: falling energy availability could reduce technological progress and damage long-term growth.

There is evidence that the mainstream “growth” model may be environmentally unsustainable as we approach biological boundaries that scientists warn us from crossing. Climate change is one such boundary. Rising sea levels, air and water pollutants, biodiversity loss, rates of extinction are all examples of how economic activity is infringing on the environment. These consequences could be wipe-out economic activity in certain areas, such as in flooded cities. Macroeconomic models do not take into account the possibility of irreversible catastrophes like this.

How can we sufficiently factor in planetary boundaries into macroeconomic models and methodologies? To what extent do economic models – with or without explicit roles for environmental factors – need to take account of feedback loops, thresholds/tipping points, fat-tailed distributions and non-equilibrium system dynamics? Do we need new models beyond DSGE such as agent based modelling? And do we think it will be these planetary boundaries, rather than material or energy constraints, that will limit economic growth? How quickly and effectively do we think we might transform current consumption and production trends, substitute for natural resource use and protect ecosystem functions? Ultimately, will we need to stop growing altogether, or is “green growth” possible in the long-term?

Research Projects

Integrating macroeconomics and ecology via energy and the Laws of Thermodynamics
How can we include energy into production in a way that is consistent with the Laws of Thermodynamics, and also Read more.

background note Summary note

Background Research Paper

Examining Sustainable Growth in Detail – Nicolas Paul Cerkez


This paper presents a review of the existing literature on sustainable growth. The article’s goals are to assess our understanding on issues related to sustainable growth and to identify important open questions and directions for future research.


Agendas and speakers from our previous workshops can be viewed below.

Related Blogs

A Shift in Temperature: The Financial Challenge of a Zero-Carbon Economy
How can macroeconomics address the fundamental challenges we face in supporting the transition to a carbon neutral economy? Read more.
Labour without energy is a corpse; capital without energy is a sculpture
Previous attempts of introducing energy in production treat it as a third “factor of production”, equal with Labour and Capital. Read more.
How can we achieve a sustainable economy?
How can we achieve a sustainable economy?
Ida Sognnaes - While the availability of cheap fossil fuels has brought with it unprecedented increases in living standards in Read more.